Infeasibility Certificates for linear matrix inequalities
نویسنده
چکیده
Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry. More precisely, we show that a linear matrix inequality L(x) 0 is infeasible if and only if −1 lies in the quadratic module associated to L. We prove exponential degree bounds for the corresponding algebraic certificate. In order to get a polynomial size certificate, we use a more involved algebraic certificate motivated by the real radical and Prestel’s theory of semiorderings. Completely different methods, namely complete positivity from operator algebras, are employed to consider linear matrix inequality domination. A linear matrix inequality (LMI) is a condition of the form
منابع مشابه
An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares
Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A l...
متن کاملSPECTRA -a Maple library for solving linear matrix inequalities in exact arithmetic
This document briefly describes our freely distributed Maple library spectra, for Semidefinite Programming solved Exactly with Computational Tools of Real Algebra. It solves linear matrix inequalities in exact arithmetic and it is targeted to small-size, possibly degenerate problems for which symbolic infeasibility or feasibility certificates are required.
متن کاملCertificates of linear mixed integer infeasibility
A central result in the theory of integer optimization states that a system of linear diophantine equations Ax = b has no integral solution if and only if there exists a vector in the dual lattice, yT A integral such that yT b is fractional. We extend this result to systems that both have equations and inequalities {Ax = b, Cx ≤ d}. We show that a certificate of integral infeasibility is a line...
متن کاملExact duals and short certificates of infeasibility and weak infeasibility in conic linear programming
We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the “easy” proofs – as sufficiency of a certif...
متن کاملOn the Global Solution of Linear Programs with Linear Complementarity Constraints
This paper presents a parameter-free integer-programming based algorithm for the global resolution of a linear program with linear complementarity constraints (LPEC). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPEC. An extreme point/ray generation...
متن کامل